LICENSING BY MODIFICATION:
THE CASE OF POSITIVE POLARITY PRONOUNS*

SALVADOR MASCARENHAS
New York University

1 Introduction

1.1 Generic readings and unselective binding
Carlson (1981) observed that English indefinite pronouns can only get generic readings when modified by a relative clause.

(1) a. Someone should be punctual. # generic
 b. Someone who respects others should be punctual. ✓ generic

As Carlson points out, this pattern is reminiscent of the licensing constraints on free-choice *any*. In the absence of an appropriate modal environment, free-choice *any* is only licensed if modified by a relative clause, in which case it is said to be subtrigged (LeGrand, 1975).

(2) (Last night, at a party,)
 a. *John talked to anyone.
 b. John talked to anyone who would listen.

The behavior of indefinite pronouns in (1) contrasts with that of *a NP* indefinites (henceforth *plain indefinites*), which can typically have generic readings, and *some NP* indefinites, which never can. For both plain indefinites and *some NP* indefinites, relative-clause modification has no effect on the availability of generic readings.

(3) a. A person should be punctual. ✓ gen
 b. A person who respects others should be punctual. ✓ gen

(4) a. Some person should be punctual. # gen
 b. Some person who respects others should be punctual. # gen

*I am greatly indebted to Anna Szabolcsi for extensive discussion of virtually every aspect of the work presented in this paper. I would also like to thank Philippe Schlenker, Chris Barker, Alec Marantz, and Tim Leffel, as well as the audience of SuB 16, for very helpful comments and discussion.
Genericity is not a crucial aspect of the contrast. Under (overt) adverbial quantifiers, the same indefinites that can participate in generic readings can be unselectively bound and acquire (something akin to) universal force (5)–(7). Table 1 summarizes these facts. To the best of my knowledge, the extant literature offers no account of the subtrigging effect observed with indefinite pronouns, or of the distribution of the three patterns in Table 1.¹

(5) a. Someone is always / usually on time. # ∀
 # ‘Everyone is always / usually on time’
 b. Someone who respects others is always / usually on time. √ ∀
 √ ‘Everyone who respects others is always / usually on time’

(6) a. A man is always / usually on time. √ ∀
 b. A man who respects others is always / usually on time. √ ∀

(7) a. Some man is always / usually on time. # ∀
 b. Some man who respects others is always / usually on time. # ∀

<table>
<thead>
<tr>
<th></th>
<th>generic readings / unselective binding</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>subtrigged</td>
</tr>
<tr>
<td>indefinite pronouns</td>
<td>√</td>
</tr>
<tr>
<td>a NP</td>
<td>√</td>
</tr>
<tr>
<td>some NP</td>
<td>×</td>
</tr>
</tbody>
</table>

Table 1: Primary data to be explained

English indefinite pronouns are well known positive polarity items (PPIs), as illustrated in (9). For the purposes of the discussion in this paper, only the property of PPIs stated in (8) need concern us.

(8) In monoclausal structures, a positive polarity item cannot scope immediately under an anti-additive operator, such as negation.²

(9) John didn’t notify someone. # ¬∃
 (can only mean: ‘there is someone John didn’t notify’) Surprisingly, indefinite pronouns appear perfectly capable of scoping under negation, in the configuration described in (8), just in case they are modified by a relative clause.³ Sentences (10a) and (10b) demonstrate this contrast.

¹Becker (1999) is a notable exception, as she gives an account of the data in (4) and (7). Our accounts of these two pieces of data share some analytical intuitions.

²Meta-linguistic negation constitutes a confound, as sentences like (9) are acceptable, with stress on didn’t, when they immediately follow an assertion of “John notified someone.”

³Szabolcsi (2004:footnote 9) observes that “the presence of a postnominal modifier (as in something interesting) often enables the PPI to scope directly below negation.” Szabolcsi’s datum can be incorporated into the proposal in this paper, if we assume that postnominal modifiers in English are in fact reduced relative clauses (see among others Cinque (2010)).
The account in this paper takes the behavior of plain indefinites to be the paradigmatic behavior of indefinites. The task is therefore to explain

1. how unmodified indefinite pronouns differ from plain indefinites,
2. and how some NP indefinites differ from plain indefinites and from indefinite pronouns.

Interestingly, the accounts of points 1. and 2. will turn out to be independent from each other. I will justify this characteristic of my proposal by giving independent evidence in favor of the important distinctions between classes of indefinites it suggests.

The contrast in (10) will come out as a corollary of my account of the facts summarized in Table 1, while allowing us to keep the generalization about PPIs in (8) as is.

1.2 The account, informally

What semantic mechanism gives rise to the generic and unselectively bound readings examined above? I propose that under well-defined conditions an indefinite can restrict an operator that quantifies over situational variables. This includes the covert generic operator and overt adverbial quantifiers. The discussion in this paper will concentrate fully on the special case of the generic operator, but it should be clear that it extends to adverbial quantifiers in general.

This manner of restriction is only possible if the indefinite has a spatial-temporal (situational) parameter, otherwise the indefinite is unsuitable to restrict a quantifier over spatial-temporal entities due to vacuous quantification over a spatial-temporal variable.

I argue that pronominal bases, and thus unmodified indefinite pronouns, lack a spatial-temporal parameter. In the spirit of Dayal (1998, 2005), I propose that relative-clause modification introduces a spatial-temporal variable.

This accounts for the contrast in (11). Only the modified indefinite pronoun in (11b) is a suitable restrictor for the covert generic operator.

(11) a. Someone should be punctual. # gen
 b. Someone who respects others should be punctual. ✓ gen

 ‘Typical / generic situations containing an individual who respects others are such that that individual should be punctual’

As the paraphrase under (11) suggests, I will assume that the indefinite effecting the restriction of the adverbial quantifier dynamically binds an individual variable in the scope of the adverbial quantifier. However, nothing in this account hinges crucially on this particular point.

Because NPs have their own spatial-temporal parameter (Enç, 1986), plain indefinites are suitable restrictors irrespective of relative-clause modification. Some NP indefinites seem suitable restrictors as far as parametrization to a spatial-temporal variable, but they obligatorily trigger an epistemic inference which prevents them doing so.

(12) Mary is dating some guy.

 inference: ‘The identity of the guy Mary is dating is unknown to the speaker / irrelevant for this conversation / uninteresting’
As (12) illustrates, this inference contains definite descriptive material from the minimal clause containing the some NP indefinite. The obligatory presence of this inference about a particular individual is incompatible with generic quantification. Intuitively (for the time being), the sentences in (13) lack generic readings for roughly the same reason (14) is nonsensical.

(13)
 a. Some student should be punctual. # gen
 b. Some student who respects others should be punctual. # gen
(14) ?? Every student should be punctual. The identity of the student who should be punctual doesn’t matter.

How do suitable indefinites get to restrict adverbial quantifiers in the paradigm above? I propose that adverbial quantifiers, including the covert generic operator, are alternative sensitive and that indefinites contribute alternatives, rather than generalized quantifiers, to the computation. Adverbial quantifiers must have access to the alternatives contributed by indefinites. This justifies a move from simple alternative semantics to structured alternative semantics.

2 Structured alternative semantics

Following the insight of the Hablin semantics (or alternative semantics) of Kratzer and Shimoyama (2002) (henceforth K&S), I take it that indefinites contribute something like sets of individuals (alternative sets) to the semantic computation, rather than generalized quantifiers. However, I propose to add a minimal amount of structure to the interpretation of alternative-carrying sentences. Instead of interpreting a sentence like (15) as a (possibly existentially quantified) set of propositions, a structured alternative semantics interprets them as pairs

\[
\langle \text{background, alternatives} \rangle.
\]

The background is an open proposition, the alternatives list the individuals that can saturate the background open proposition, and correspond to K&S’s proposed interpretation for indefinites. Compare the two kinds of interpretation in (15a) and (15b).

(15)
 a. K&S-style alternative semantics: \{\lambda.s.saw'(s)(x)(m) : x \text{ a person}\}
 b. This proposal: \langle \lambda.s.x.saw'(s)(x)(m), \lambda.s.person'(x) \rangle

An intuitive way to look at these meanings is as instructions to build a (K&S style) proposition-set meaning. The background gives us a function from (situations to functions from) individuals to truth-values, and the alternatives provide the domain restriction of this function. Applying each individual in the alternatives to the background and collecting all the results gives us the K&S style proposition set in (15a). Crucially, in the structured meaning (15b), but not in the proposition-set meaning (15a), the alternatives contributed by the indefinite are fully accessible for further computations. This will allow the generic operator and adverbial quantifiers to bring these alternatives into their restrictors.

\footnote{For K&S, sets of propositions are always eventually quantified over, bringing them to the level of truth conditions. The framework of Inquisitive Semantics however (Groenendijk, 2008, Mascarenhas, 2009) argues that there is much to be gained from exploring the proposition-set interpretation of sentences, without quantification of any kind over these sets. The proposal in this paper is silent about this particular issue.}
Meanings as in (15b) were proposed by Krifka (2001) within a structured-meanings account of questions. Krifka argues that they are necessary to account for certain focus phenomena in answers, as well as to distinguish between questions that are indistinguishable for a standard (structureless) question semantics. To give but a brief example, in a standard proposition-set account of questions, the meanings of some pairs of polar question / alternative question are indistinguishable:

(16) a. Is the door open?
 \{open, \neg open\}

 b. Is the door open or closed?
 \{open, closed\}

But clearly these questions are answered differently. Assuming it is desirable for the distinction to be reflected in the semantics, Krifka’s account offers a solution. The questions in (16) are interpreted as in (17); notice how the alternatives (determining what counts as an answer to the question) in (17a) differ from those in (17b).

(17) a. Is the door open?
 \langle \lambda f[f(open)], \{\lambda p[p], \lambda p[\neg p]\}\rangle

 b. Is the door open or closed?
 \langle \lambda p[p], \{open, closed\}\rangle

Interestingly, Szabolcsi (2003) gives a variable free dynamic semantics that relies on a treatment of indefinites that is isomorphic to Krifka’s work on questions and the structured alternative semantics proposed in this paper. Structured alternative semantics can therefore be seen within a broader context of proposals that add structure to the interpretation of indefinites and questions.

There is naturally more than one way to implement structured alternatives compositionally. A modification of Szabolcsi’s (2003) dynamic semantics gives a variable-free categorial grammar for structured alternatives. Krifka (1995, 2011) gives a compositional treatment of focus and questions in a structured meanings approach. In the interest of space, I refrain from presenting the specifics of any of these implementations in this paper. It is however important to see examples of the kinds of sentence interpretations that my proposal assumes.

Recall that sentences are interpreted as pairs \langle background, alternatives\rangle. Backgrounds are functions of type \(s(\operatorname{et})\), where \(s\) is the type of situations, or spatial-temporal locations. Alternatives are also functions from situations to predicates of individuals. Alternatives are fully determined by properties of the indefinite.

Because pronominal bases lack a situational parameter, indefinite pronouns contribute functions constant with respect to their situational argument (18a). Modified indefinite pronouns

5 Szabolcsi’s (2003) interpretation of a sentence like “Someone entered the room” is \(\lambda px.\text{enter}'(x) \land p\), for \(x\) a variable ranging over people. Ignoring the abstraction over the continuation variable \(p\) (which is however needed for the dynamic properties of Szabolcsi’s system), we see that this interpretation consists of a background — the lambda term itself — and a set of alternatives — hidden in the restriction of the domain of the function to the set of people.

6 For the case of sentences with multiple indefinites, the types will become more complex, as further abstractions over variables of type \(e\) will be present in the background.

7 For the case of indefinites like somewhere or sometime, they will be functions from situations to predicates of locations respectively times.
(18b), plain indefinites (18c), and *some NP* indefinites (18d) contribute alternatives that (potentially) vary with the situational argument they are given. In the next section, I give my account of the paradigms reviewed in section 1 and motivate the proposal about pronominal bases.

(18) a. Mary saw someone.
 \(\langle \lambda sx. \text{saw}'(s)(x)(m), \lambda sx. \text{person}'(x) \rangle \)

b. Mary saw someone who seemed interesting.
 \(\langle \lambda sx. \text{saw}'(s)(x)(m), \lambda sx. \text{person}'(x) \wedge \text{interesting}(s)(x) \rangle \)

c. Mary saw a person.
 \(\langle \lambda sx. \text{saw}'(s)(x)(m), \lambda sx. \text{person}'(s)(x) \rangle \)

d. Mary saw some person.
 \(\langle \lambda sx. \text{saw}'(s)(x)(m), \lambda sx. \text{person}'(s)(x) \rangle \)

3 Indefinite pronouns and plain indefinites

3.1 Indefinite pronouns

Recall the contrast in (19)

(19) a. Someone should be punctual. # gen

b. Someone who respects others should be punctual. ✓ gen

I make the standard assumption (see Carlson and Pelletier, 1995, and references therein) that the interpretation of (19b) involves a covert occurrence of the generic operator \(\text{GEN} \). Let \(\text{GEN} \) be defined as in (20), abstracting away from the specific quantificational force of the generic quantifier and interpreting it as a universal quantifier over situations, for simplicity. In (20), the existential quantifier is dynamic and thus donkey-binds \(x \) in the consequent.\(^8\)

(20) \(\text{GEN}(\langle B, A \rangle) \) is true iff \(\forall s. (\exists x. A(s)(x)) \rightarrow B(s)(x) \)

The interpretation of (19b), with a covert application of \(\text{GEN} \), is as in (21).

(21) Someone who respects others should be punctual.
 \(\langle \lambda sx. \text{should be punctual}'(s)(x), \lambda sx. \text{person}'(x) \wedge \text{respects others}'(s)(x) \rangle \)

\[\text{GEN}(\langle \lambda sx. \text{should be punctual}'(s)(x), \lambda sx. \text{person}'(x) \wedge \text{respects others}'(s)(x) \rangle) \]
\[= \forall s. (\exists x. \text{person}'(x) \wedge \text{respects others}'(s)(x)) \rightarrow \text{should be punctual}'(s)(x) \]

In words: ‘Every (generic) situation \(s \) containing some person \(x \) who respects others in \(s \) is such that \(x \) should be punctual in \(s \).

\(^8\)This is a design choice, and by no means a crucial aspect of this proposal. The following definition would work just as well.

\[\text{GEN}(\langle B, A \rangle) \) is true iff \(\forall sx. A(s)(x) \rightarrow B(s)(x) \)

The dynamic version in (20) is arguably more intuitive, as it maintains the essentially existential nature of the indefinite.
This produces the desired truth conditions. What about unmodified indefinite pronouns as in (19a), which cannot get generic readings?

Recall the proposal that pronominal bases lack a situational parameter. This amounts to saying that the predicate contributed by the pronominal base effects a very weak kind of restriction to the meaning of the indefinite. Pronominal bases like *one and *thing allow indefinites to range over different sorts of entities like people and objects, but that is as specific as one is allowed to get simply with a pronominal base. In particular, it is impossible to interpret an unmodified indefinite pronoun like *someone as restricted to, say, the people in New York City at the time of writing of this paper. I return to this issue shortly.

Following the spirit of Dayal’s (1998) account of free-choice *any, I propose that in (19a) the generic operator cannot apply because the alternatives supplied by the indefinite cannot be parametrized to a situation.

(22) Someone should be punctual.
\[\langle \lambda sx. should be punctual'(s)(x), \lambda sx. person'(x) \rangle \]
\[\text{GEN}((\lambda sx. should be punctual'(s)(x), \lambda sx. person'(x))) = \]
\[\forall s.(\exists x. person'(x)) \rightarrow should be punctual'(s)(x) \]

As seen in the underlined portions of (22), the indefinite pronoun contributes a predicate without a situational argument (the lambda abstractor over \(s \) in the alternatives is there purely for compositional reasons). The result of applying GEN will involve vacuous quantification by the generic quantifier into its restrictor. The need for parametrizable material in the restrictor is ubiquitous with adverbial quantifiers, as demonstrated by the sharp deviance of the sentences in (23).

(23) a. *?Whenever I am hungry now, I always tend to eat.

b. *?Whenever Callas died in 1977, I usually feel nostalgic.

In (23), the whenever-clauses, functioning as overt situational restrictors, contain material whose situational variables are already saturated. The adverbial quantifiers *always and *usually thus quantify vacuously into their own restrictors, and deviance obtains. Similarly, in (22), vacuous quantification of the generic quantifier into its restrictor yields sharp deviance, and the reading with GEN present is ruled out.9

The proposal that unmodified indefinite pronouns cannot be parametrized to a situation has independent motivation. It predicts that the schema in (24), instantiated in (25), cannot be observed with unmodified indefinite pronouns.

(24) \(Op_1(s) \quad Op_2(s') \quad (Qx \in P(s)) R(s')(x) \)

(25) Someday, everybody now alive will be dead.
\[(\exists t > \text{now}) (\forall x \in \text{alive}'(now)) \rightarrow \text{dead}'(t)(x) \]

9I cannot at this point definitively answer the important question of whether the requirement that adverbial quantifiers have non-vacuously quantified restrictors is a well-formedness constraint or a pragmatic one. The sharp deviance of (23), as well as the complete unavailability of a generic reading for (22), suggest that it is a well-formedness constraint, but a more comprehensive look at the effects of violating this constraint elsewhere in language might be needed to decide.
The crucial feature of the schema in (24) is that the restrictor P of a quantifier Q low in the structure contains a variable bound by a distant operator Op_1 and not the closer Op_2. In (25) (a kind of sentence discussed at length in Cresswell, 1990), the role of Op_1 is played by the conversational context and that of Op_2 by the adverb someday. Notice that the restrictor of the universal quantifier everybody contains the contextual now as an argument, and not the variable t bound by someday.

If unmodified indefinite pronouns do not take situational parameters, we predict that it should be impossible to manipulate directly the situation at which the predicate contributed by the pronominal base is evaluated. These kinds of configurations are indeed unavailable to unmodified indefinite pronouns. Compare the sentences in (26), where the prefixed judgments indicate the availability of the reading where the indefinite is interpreted with respect to the context of utterance.

(26) a. If, in 200 years, someone who is now old is still alive, the world will be shocked.
 b. *If, in 200 years, an old man is still alive, the world will be shocked.
 c. *If, in 200 years, some old man is still alive, the world will be shocked.
 d. # If, in 200 years, someone is still alive, the world will be shocked.

Sentence (26a), with an unmodified indefinite pronoun, forces the relevant reading. Although ambiguity creeps in, this reading is also available for (26b) and (26c), with a plain indefinite, respectively a some NP indefinite. Sentence (26d) contrasts sharply with any of the preceding three, in that the relevant reading is completely impossible.

3.2 Plain indefinites

Plain indefinites are interpreted just like modified indefinite pronouns in the relevant respects. Their NP provides material that can be parametrized to a situation (Enç, 1986), and thus the generic readings of the sentences in (27), as well as the fact that relative-clause modification makes no relevant difference, are readily accounted for. Compare the underlined portions of the sentences in (28), highlighting the differences in the analyses of plain indefinites, indefinite pronouns, and modified indefinite pronouns.

(27) a. A person should be punctual.
 b. A person who respects others should be punctual.

(28) a. Someone should be punctual.
 b. A person should be punctual.
 c. Someone who respects others should be punctual.

3.3 Positive polarity pronouns

This account extends to data as in (29), where a modified positive polarity item appears to be able to take scope under negation, violating the generalization in (30).
(29)
 a. John doesn’t attack someone. # ¬∃
 b. John doesn’t attack someone he respects. # ¬∃

(30) In monoclausal structures, a positive polarity item cannot scope immediately under an anti-additive operator, such as negation.

 I propose that in (29b) the generic operator is present. The interpretation of (29b) is therefore as in (31).

(31) John doesn’t attack someone he respects.

 \[\text{GEN}((\lambda sx. \neg \text{attack}'(s)(x)(j), \lambda sx. \text{person}'(x) \land \text{respects}'(s)(x)(j))) \]

 \[= \forall s. (\exists x. \text{person}'(x) \land \text{respects}'(s)(x)(j)) \rightarrow \neg \text{attack}'(s)(x)(j) \]

In (31) negation isn’t scoping above the indefinite and violating the constraint in (30). Rather, the indefinite is restricting the generic quantifier, away from the negation, and dynamically binding into the nuclear scope of the generic quantifier. This gives the illusion of a \(\neg > \exists \) scopal configuration, without actually instantiating one.\(^{10}\) Sentence (29a) lacks the corresponding illusory \(\neg > \exists \) scope reading because it lacks a generic reading.

Since \text{GEN} is incompatible with episodic sentences (see among others Menéndez-Benito, 2005), this analysis predicts that in episodic sentences the illusion of \(\neg \exists \) readings does not arise. This prediction is borne out. Contrast (29b) with (32).\(^{11}\)

(32) Yesterday at 5:00pm, John didn’t attack someone he respected. # ¬∃
 (can only mean: ‘yesterday at 5:00pm, there was someone John respected whom he didn’t attack’)

4 Some \text{NP} indefinites

Recall that \text{some \ NP} can never get generic readings, irrespective of relative-clause modification:

(33)
 a. Some person should be punctual. # gen
 b. Some person who respects others should be punctual. # gen

This is puzzling because \text{some \ NP} indefinites do take a spatial-temporal argument. Why then do \text{some \ NP} indefinites not behave like plain indefinites?

 It is interesting to observe first that in some languages the correlates of \text{some \ NP} indefinites are clearly more morpho-syntactically complex than plain indefinites. Portuguese \text{algum \ NP} is a good example, as shown in (34).\(^{12}\) Portuguese thus gives us some reason not to be too surprised if English \text{some \ NP} indefinites turn out to have features that are absent from plain indefinites.

(34)
 a. alguém \(\rightarrow \text{alg} + \text{ém} \)
 `someone’ \ some \ one

\(^{10}\)It can be thought of as an instance of \(\forall \neg \), rather than \(\neg \exists \). See footnote 8.

\(^{11}\)The usual caveats about PPI judgments apply. That is (32) can be used with a \(\neg \exists \) interpretation, but only with the focus on \text{didn’t} that is characteristic of meta-linguistic negation.

\(^{12}\)A similar case could perhaps be made for German \text{irgend + ein Student}, but the distribution of German \text{irgend} doesn’t track that of English \text{some} quite closely enough (see for example Kratzer and Shimoyama, 2002). Portuguese \text{alg} corresponds much more closely to English \text{some} in the relevant respects.
b. um estudante
 a student

c. algum estudante — alg + um estudante
 ‘some student’ some + a student

Some NP indefinites indeed have a property absent from both plain indefinites and indefinite pronouns. They are epistemic indefinites, and obligatorily trigger an epistemic inference, roughly to the effect that the identity of the NP is unknown to the speaker, irrelevant to the conversation, or intrinsically uninteresting.\(^{13}\)

(35) Mary is dating some guy.
 inference: ‘the identity of the guy Mary is dating is unknown / irrelevant / uninteresting’

Within the framework of structured alternative semantics, and glossing over issues of the semantics of questions and of predicates of questions such as *be irrelevant*, the general formulation of this inference is as in (36). Importantly, the inference contains a definite description with material from the clause containing the indefinite, namely the *B* (background) part:

\[(36) \langle B,A \rangle \]
\[
\text{inference: the identity of } x \text{ with } A(x) \text{ such that } B(x) \text{ is unknown / irrelevant / uninteresting}
\]

While the exact nature of this inference is unclear (entailment, presupposition, conversational implicature), it can clearly be embedded. In the discourse in (37), the last sentence is most naturally interpreted with this epistemic inference as a part of the antecedent of the conditional.\(^{14}\)

(37) Someone may drop by today. If it’s the plumber, let him in. **If it’s some guy, don’t.**

Crucially, this epistemic inference is absent from plain indefinites and indefinite pronouns. Accordingly, the discourses in (38) are very odd.\(^{15}\) The examples in (39) further corroborate this contrast.

(38) Someone may drop by today. If it’s the plumber, let him in.
 a. ?? If it’s a guy, don’t.
 b. ?? If it’s someone, don’t.

(39) a. Whenever Mary is dating John I am happy, but when she’s dating some guy I’m not.
 b. ?? Whenever Mary is dating John I am happy, but when she’s dating a guy I’m not.
 c. ?? Whenever Mary is dating John I am happy, but when she’s dating someone I’m not.

\(^{13}\)See Jayez and Tovena (2006) and Aloni (this volume) for an overview of the functions of epistemic indefinites in French, respectively German and Spanish. For English *some NP*, Becker (1999).

\(^{14}\)While all speakers agree that this reading exists, there is variation with respect to whether a particular intonation is required to get it. This casts strong doubts on the possibility that it is an entailment. One of the difficulties in pinpointing the exact nature of the inference is the positive polarity aspect of *some NP*, which makes the usual tests for presupposition and implicature somewhat harder to evaluate. Fortunately, the account in this paper doesn’t depend on the nature of the inference.

\(^{15}\)The discourses in (38) are also odd for the speakers that report a need for a particular intonational contour to get the intended reading of (37).
The question is then: what would happen if the covert generic operator were present in the interpretation of a sentence like (40)?

(40) Some student should be punctual.
 inference: 'the identity of the student who should be punctual is unknown / irrelevant / uninteresting'

The intuition behind this approach is the following. The GEN operator (and other adverbial quantifiers), because it uses the alternatives provided by the indefinite to form its restrictor, is incompatible with the persistence of an inference about a particular individual, such as the obligatory inference of epistemic indefinites as discussed here. This is cashed out in the following way.

Suppose we attempt to apply GEN to (the LF of) (40). Irrespective of the exact nature of the epistemic inference, there are two possibilities. First, the inference may follow the fate of the alternatives generated by some student and be embedded in the restrictor of GEN.

(41) $\text{GEN}(\text{Some student should be punctual})$
 $\forall s. (\exists x. \text{student'}(s)(x) \land$
 $\text{the identity of the student who should be punctual is irrelevant})$
 $\rightarrow should be punctual(s)(x)$
 'All situations containing a student and such that the identity of the student that should be punctual is irrelevant are such that that student should be punctual'

The underlined portion in (41), containing a definite description, is clearly a presupposition failure, as no such student has been established in the antecedent clause.

The other possibility is that the inference projects all the way to the top:

(42) $\text{GEN}(\text{Some student should be punctual})$
 $\forall s. (\exists x. \text{student'}(s)(x)) \rightarrow should be punctual(s)(x)$
 inference: 'the identity of the student who should be punctual is irrelevant'
 'All situations containing a student are such that that student should be punctual; the identity of the student that should be punctual is irrelevant'

This yields a presupposition failure as well. All possible derivations of (40) where GEN is present yield very strong presupposition failures, and are therefore blocked.

5 Concluding remarks

This paper set out to explain the paradigms summarized in (43).

(43) Summary of facts accounted for:

<table>
<thead>
<tr>
<th></th>
<th>generic readings / unselective binding</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>subtrigged</td>
</tr>
<tr>
<td>indefinite pronouns</td>
<td>✓</td>
</tr>
<tr>
<td>a NP</td>
<td>✓</td>
</tr>
<tr>
<td>some NP</td>
<td>×</td>
</tr>
</tbody>
</table>
The account is couched in a structured alternative semantics, combining a Kratzer and Shimoyama (2002) approach to indefinites with Krifka’s (2001) analysis of questions as structured meanings. A structured alternative semantics adds to a classical alternative semantics the possibility of accessing the alternatives generated by the indefinite later on in the computation. Adverbial quantifiers, including the covert generic operator \textit{GEN}, are alternative sensitive, and can potentially use these indefinite-generated alternatives to form their restrictors.

This process is blocked in two classes of cases. 1. Unmodified indefinite pronouns lack a spatial-temporal parameter, and therefore cannot restrict a quantifier over situations. Quantifiers of this sort require restrictors that can be parametrized to a situation. 2. $\textit{Some NP}$ indefinites trigger an obligatory epistemic inference with definite descriptive content that is incompatible with the purely quantificational force that an indefinite acquires by virtue of restricting an adverbial quantifier.

References

